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Abstract

Nonlinear wave motion in dispersive media is solved numerically. The model applies to laser propagation in a relativ-
istic plasma. The latter causes, besides dispersion, nonlinear effects due to relativistic mass variation in the presence of
strong laser pulses. A new variant of the Gautschi-type integrator for reducing the number of time steps is proposed as
a fast solver for such nonlinear wave-equations. In order to reduce the number of spatial grid points, a physically moti-
vated quasi-envelope approach (QEA) is introduced. The new method turns out to reduce the computational time signif-
icantly compared to the standard leap-frog scheme.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Wave motion in nonlinear dispersive media, such as the propagation of high-intensity laser pulses in plas-
mas, is of great interest both for technical applications as well as the understanding of fundamental nonlinear
phenomena. Because of the vast number of different physical effects that can occur during nonlinear laser–
plasma interaction in a specific physical system, it is of course necessary to simplify the analytical model as
much as possible, while still including the important effects. But it is also necessary to tailor the numerical
methods to the specific problem, using the physical insight gained from the analytics. This yields both efficient
and accurate numerical tools to study the dynamics of nonlinear wave equations.

In this paper we are interested in the fast numerical simulation of nonlinear wave propagation in dispersive
media. We chose for demonstration the propagation of a laser pulse from vacuum into a cold underdense
plasma layer. This can of course be generalized to a stratified medium consisting of several such layers, as
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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discussed for example in [1] for pulse compression. It has been shown (see [2] and references therein) that in
such situations, when the oscillatory velocity of the electrons approaches the speed of light, the resulting vari-
ations in the electron mass produce a significant contribution to the refractive index which can become more
important than that due to ponderomotive force effects. Many results, e.g. [3–5], have been worked out for
wave motion in the weakly relativistic regime. During the past years, slow and fast solitons caused by relativ-
istic mass variations [6–9] have been discussed. In many cases, a slowly varying envelope approximation has
been used, that results in nonlinear Schrödinger-type equations. The latter, however, may not be appropriate
in the cases of subcycle solitons as well as for strongly inhomogeneous systems, where one has to include vac-
uum–plasma boundaries.

In the case of very high laser intensities and steep gradients of the fields, the plasma does not reach a local
thermodynamic equilibrium and the particle distribution is essentially non-Maxwellian even on small scales.
In this case, one has to solve the detailed dynamics of the distribution function in phase space. For that, Vla-
sov as well as particle-in-cell (PIC) codes are in use [10–13]. Vlasov codes integrate the kinetic Vlasov equation
on an Eulerian grid in phase space. In PIC simulations, the phase space is sampled by macro-particles. From
the positions and momenta of these particles the source terms of the field equations, which are solved on a
grid, are interpolated. Hybrid codes that use a fluid description for the ions and a kinetic description for
the electrons have also been developed [14], as well as codes that include binary collisions using Monte-Carlo
techniques [15].

If intensities as well as gradients are only moderately high, a magneto-hydrodynamical description becomes
possible, especially if one is more interested in the dynamics of the laser pulse than that of the plasma. A fluid
description is appropriate if the plasma is either locally Maxwellian or cold (which means that ponderomotive
effects are less important than relativistic mass effects).

The present physical model results in a nonlinear wave equation for the vector potential coupled to the
response of the medium. From the numerical point of view the problem is challenging because of the oscilla-
tory behavior of the solution in space and in time. For discretization in space, the method of choice is the
pseudospectral method which approximates spatial derivatives by using the fast Fourier method. The standard
time integration scheme is the leap-frog method, which has a number of desirable properties, e.g. symmetry
and symplecticity [16]. However, for linear stability (i.e., bounded error propagation in linearized equations),
the product of the step size and the largest frequency of the system must be restricted by the value 2, and good
energy conservation requires this product to be even smaller (typically around 1/2) [17, Chapter XIII]. In the
recent papers [18,19], methods with improved stability and accuracy properties have been proposed. These
methods allow larger time steps than the leap-frog method. In fact, it can be shown that in certain cases
the error is of second-order in time, independent of the highest frequencies arising in the system.

In the present paper, we propose a new variant of the Gautschi-type integrator, see [20] and further devel-
opments in [19], for reducing the number of time steps when solving a nonlinear wave equation. In order to
reduce the number of spatial grid points, we introduce a physically motivated quasi-envelope approach
(QEA). The new method turns out to reduce the computational time significantly compared to the standard
leap-frog scheme. We also compare the results to PIC simulations performed with the VLPL (virtual laser
plasma lab) [21].

2. Physical model

The basic set of equations being used for computation, is
o2a
oz2
� o2a

ot2
¼ Q
ðn0 þ dnÞ

c
a; ð1Þ

o2E
ot2
þ Qn0E ¼ �n0

oc
oz
; ð2Þ
where a is the normalized vector potential,
c2 ¼ 1þ jaj2 ð3Þ

and E the longitudinal electric field which gives the density modulation
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dn ¼ � oE
oz

. ð4Þ
Q < 1 is a parameter and n0 is the normalized density profile. For the latter we shall use either a step profile or
a profile with a linear increase and decrease of density at the plasma boundary. In vacuum n0 ” 0, which
implies E ” 0.

The physical solution is a pulse localized in space. Due to finite energy it is bounded in L2.
The validity of the model is restricted to the following assumptions. The wave equation (1) for a circularly

polarized high-frequency wave vector potential A^ (with normalized transverse vector potential a) propagat-
ing in z-direction is influenced by relativistic electron mass variation (c-factor). The space-variation of the c-
factor causes density modulations (dn) and plasma oscillations as described by (2). Ion motion is neglected for
fast propagation. The parameter Q � nmax

ion =nc (maximum ion background density over critical density) should
be less than 1 for wave propagation in an underdense medium and greater than 1/4 to avoid Raman
instability.

Scalar as well as vector potentials are measured in units mc2/e, whereas nmax
ion is used as a unit for the density,

velocities are measured in units of c, and momenta are normalized with mc. We denote me ” m as the electron
rest mass. The electromagnetic wave has a wave-number k0; the inverse of its magnitude ðk�1

0 Þ is being used as
the unit length. Similarly, the inverse of the wave-frequency x0 has been used as the time unit. We have
x0 = ck0 in vacuum. The critical density nc is defined via x2

0 � 4pnce2=m.
A derivation of the model can be found in Appendix A.

3. Numerical schemes

3.1. Spatial discretization

Due to the finite energy assumption on the physical solution it is possible to consider periodic boundary
conditions for the discretization as long as the simulation box is big enough and one takes care of reflected
pulses at the boundaries. For long time simulations this can be combined with a moving window technique.

Semi-discretization in space is done by a pseudospectral method with N Fourier modes on a space interval
z 2 z0 + [�L, L]. This leads to the following system of coupled ordinary differential equations in time (the
prime denotes time-derivative):
a00 ¼ �D2aþ gða; dnÞ; gða; dnÞ ¼ �Qðn0 þ dnÞ 1
c

a; ð5Þ

E00 ¼ �x2E þ f ðaÞ; f ðaÞ ¼ �n0iD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jaj2

q
. ð6Þ
Here, D2 ¼F�1
N D2FN , where FN is the discrete Fourier-transform operator, and
D ¼ p
L

diag �N
2
;�N

2
þ 1; . . . ;�1; 0; 1; . . . ;

N
2
� 1

� �
.

The jth component of the vectors a(t) and E(t) are approximations to a(zj,t) and E(zj,t) at zj ¼ z0 þ j 2L
N , and

x2 = Qn0.

3.2. Gautschi-type exponential integrator for time discretization

We propose to solve these equations with a modification of a Gautschi-type exponential integrator [19].
This integrator is motivated as follows: By the variation-of-constants formula, the exact solution of
y 00 ¼ �X2y þ F ðyÞ ð7Þ

satisfies
yðt þ sÞ ¼ 2 cosðsXÞyðtÞ � yðt � sÞ þ
Z s

0

X�1 sinððs� sÞXÞðF ðyðt þ sÞÞ þ F ðyðt � sÞÞÞds. ð8Þ
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For a constant inhomogeneity F this yields
yðt þ sÞ ¼ 2yðtÞ � yðt � sÞ þ s2wðsXÞð�X2yðtÞ þ F Þ;

where
wðxÞ ¼ 2
1� cos x

x2
.

In the general case, a numerical scheme is obtained by substituting a suitable approximation of F(y(t ± s)) into
(8). This leads to approximations yk � y(tk), tk = ks, defined by
ykþ1 ¼ 2yk � yk�1 þ s2wðsXÞð�X2yk þ F kÞ.

The simplest choice, originally proposed by Gautschi [20], is to set Fk = F(yk). However, the convergence anal-
ysis in [19] shows that in order to obtain second-order error bounds, which are independent of the product of
the step size with the frequencies, it is necessary to evaluate the nonlinearity F at a filtered position, i.e.,
Fk = F(/(sX)yk). If this filter function is omitted, then large errors are expected in the case when the product
of the step size s with one of the frequencies of the problem (the eigenvalues of X) is an integer multiple of p.
The filter function / is a suitably chosen real function whose purpose is to filter out resonant frequencies, e.g.
/ðxÞ ¼ sin x
x

� �2

; or /ðxÞ ¼ sin x
x

� �2

1þ 1

2
ð1� cos xÞ

� �
.

The integrator applied to (7) then reads
ykþ1 ¼ 2yk � yk�1 þ s2wðsXÞð�X2yk þ F kÞ; F k ¼ F ð/ðsXÞykÞ. ð9Þ

In addition it is also possible to obtain approximations to the ‘‘velocities’’ y 0 via
y0kþ1 ¼ y0k�1 þ 2srðsXÞð�X2yk þ F kÞ; ð10Þ
where r(x) = sinx/x. Note that approximating the ‘‘velocities’’ by standard finite differences will lead to inac-
curate results due to the oscillatory behavior of y.

For X = 0 the Gautschi-type integrator reduces to the well known leap-frog or Störmer–Verlet method. We
will use (9) and, if desired, (10) for the integration of (5) for the vector potential.

The accuracy of the integrator may be further improved if approximations to the inhomogeneity are avail-
able at additional times. This is only true if we solve Eq. (6) for the electrical field because there the inhomo-
geneity only depends on a. If we solve the equation for a first, we have approximations aj � a(tj) for
j = k � 1,k, and k + 1. We then replace f(a) by an interpolation polynomial of degree two interpolating in
(tk�1,f(ak�1)), (tk,f(ak)), and (tk+1,f(ak+1)). Note that we consider the circular polarized case, in which f is a
smooth function. Using this interpolation polynomial instead of F(y(t ± s)) in (8) yields
Ekþ1 ¼ 2Ek � Ek�1 þ s2wðsxÞð�x2Ek þ f ðakÞÞ þ s4vðsxÞðf ðakþ1Þ � 2f ðakÞ þ f ðak�1ÞÞ ð11Þ

for (6), where
Ek � EðtkÞ and vðxÞ ¼ 2
cos x� 1þ 1

2
x2

x4
.

The scheme (11) is of order four, if aj, j = k � 1, k, k + 1 are exact or sufficiently accurate approximations of
a(tj). However, the coupled scheme (9), (11) cannot be better than second-order.
3.3. Choice of operators

For solving (5) the obvious choice would be using (9) with X = D. By construction, the Gautschi-type inte-
grator then solves equations y00 = �X2y + F with constant F exactly. Due to the special form of the nonlinear-
ity g, we can enlarge the part which is integrated exactly by writing
gða; dnÞ ¼ �aaþ ~gða; dnÞ
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and setting X2 = D2 + a for a suitable a. If the pulse is inside the plasma, the dominant term of g is linear in a,
which suggests to choose a = Q. Outside the plasma (where n0 = 0) the nonlinearity is negligible so that one
should set a = 0.

3.4. Quasi-envelope approach

The motivation behind the quasi-envelope approach (QEA) is illustrated on a numerical result shown in
Fig. 1: the spectrum of the vector potential splits into two parts. The important part is concentrated around
a certain characteristic wave number depending on whether the pulse propagates inside or outside of the
plasma. In addition there is another peak resulting from reflection which is not of interest in our physical
application. Therefore, it is sufficient to resolve the main pulse only. The number of spatial grid points
required can be reduced significantly by shifting the spectrum appropriately, i.e., we replace the vector poten-
tial a by
aðz; tÞ ¼ ~aðz; tÞeijz
and solve (1) for ~a instead of a. This yields
o2

ot2
~a ¼ o2

oz2
~aþ 2ij

o

oz
~a� j2~a� Qðn0 þ dnÞ 1

c
~a; c2 ¼ 1þ j~aj2.
Note that in the ‘‘classical’’ envelope approximation o2~a=oz2 is neglected, leading to a Schrödinger type equa-
tion in z. In the spatially discretized Eq. (5), D2 has to be replaced by ðDþ jÞ2. The value of j can be varied
for different positions of the pulse (inside/outside of the plasma or at the boundary), so we choose
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1� Q
p

, j = 1 or the mean value of both.

3.5. Multilevel approach

Obviously, the spatial grid size is determined by the necessity of resolving reflections arising at jumps of the
plasma density. If we have a sharp jump (for instance in the case of a rectangular density profile shown in
Fig. 2), then the reflections require small spatial grid sizes only when the pulse enters or leaves the plasma.
This can be exploited in a standard way by using two (or more) different grids. In our case we used a fine grid
in transitions between vacuum and plasma and a coarse one in the remaining simulation. Switching between
coarse and fine grid is done by interpolation and from the fine to the coarse grid by restriction (both in Fourier
space). Note that this switch requires to recompute the differential operator and hence the matrix operators
required for the Gautschi-type integrator.
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Fig. 1. Spectrum of the vector potential while entering the plasma, K ¼
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Fig. 2. Pulse propagation (solid line) shown at different times and background density profile (dashed line) for a0 = 0.1 (top) and a0 = 0.12
(bottom).
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3.6. Overall numerical method

We suggest to combine the strategies described above. This requires the computation of three or more sets
of operators: one in vacuum (av = 0, jv = 1, coarse grid), one in plasma (ap = Q, jp ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1� Q
p

, coarse grid),
and one in the transition (at ¼ Q=2; jt ¼ ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� Q
p

Þ=2, fine grid), and possibly additional sets if the pulse
gets too steep to be resolved on the coarse grid in plasma due to nonlinear pulse compression. If background
density is small (so that the difference between vacuum and plasma wavelength is also small) and the density
profile has no sharp jump (so that no reflection occurs), it maybe sufficient to use the same set of operators for
both the transitional region and the plasma region on the same coarse grid, with a j halfway between vacuum
and plasma wave-number. Recall that in vacuum, there is no nonlinearity, and thus the Gautschi-type inte-
grator solves the problem exactly for arbitrary time steps. Obviously, it is not necessary to compute filter func-
tions in this case.

4. Exemplary results

4.1. Description of the simulated problem

For runtime comparison we chose a simulation box of length 1000k. As density profile we used a piecewise
linear function which is 0 for z smaller than 100k and greater than 810k, 1 for 105k < z < 805k and linear in
between. In this case, the multilevel approach is not necessary, because nearly no reflection occurs at the
plasma boundaries. To simplify the simulational setup for the runtime comparison further, for methods with
QEA, only one set of operators is used with a mean value of vacuum and plasma wavenumber. With an addi-
tional set of operators for the plasma part, the results discussed below would be even better. But for a low
background density like Q = 0.3, which we used, the results are already very good. For denser plasmas
(e.g. Q = 0.6), switching of operators between plasma boundary and plasma parts of the density profile
becomes a necessity. For the multilevel tests we used a rectangular density profile beginning at 105 k and end-
ing at 805k, cf. Fig. 2, and we included the different operators discussed in Section 3.6.

The initial conditions for the vector potential in vacuum were calculated from
aðz; tÞ ¼ a0e
�ðz�z0�tÞ2

W 2
0 eiðz�tÞ ð12Þ
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at t = 0 and t = s. The parameters were z0 = 35k, W0 = 10k, and a0 = 0.1 or a0 = 0.12. Due to our normali-
zation k = 2p.

As an example, the time evolution for two different initial amplitudes (with the rectangular plasma profile)
is shown in Fig. 2. In both cases, first a compression and then a widening of the pulse can be seen. If we cal-
culate the amplitude for the single soliton state of the Schrödinger model for a W0 = 10k wide sech(z/W0)
pulse (see [1]), we get a0 � 0.038. A simulation of such a pulse verifies that the soliton state of our model equa-
tions is close to this. For the two amplitudes above, this implies that we are well within the nonlinear regime. It
also suggests that the initial condition with a0 = 0.1 is close to a bound two-soliton state, while for a0 = 0.12 it
is clearly above. In the latter case the pulse compresses more and earlier, and more energy is radiated away
from the core of the pulse after the compression.

As benchmarks for the accuracy of the different numerical schemes, we used two error measures. Since we
do not have an analytical solution of the nonlinear model equations, we computed a reference solution on a
very fine grid (N = 217) with very small time steps. We then used it to measure the error in maximum ampli-
tude squared (amplitude error) and its position (phase error) at different times of the simulation results. Since
the simulations were computed on coarser grids (especially the QEA solutions) we first Fourier interpolated to
the same number of grid points as the reference solution.

4.2. Effect of different time-integration schemes

If the vector potential is held in Fourier space and only transformed back for the evaluation of the nonlin-
earity/inhomogeneity, one has to compute six fast Fourier transforms per time step for the leap-frog method
(two for the nonlinearity of the wave equation, two for the inhomogeneity of the plasma response, and two for
the transformation of E). There is one more Fourier transform needed for the Gautschi-type integrator since
in each step the filtered as well as the nonfiltered vector potential is required in real space. In addition, one has
to compute the products with the matrix functions w, /, and possibly r. Obviously computing a single time
step with the Gautschi-type integrator is more expensive than one time step with the leap-frog method. But it
turns out that the Gautschi-type method allows larger time steps in order to reach the same accuracy.

In Figs. 3 and 4 maximum relative amplitude error (left) and maximum phase error in k (right) are plotted
over computational time. Each curve represents one integrator on one spatial grid with different time steps.

For a given tolerance for the relative amplitude error the leap-frog method (dotted + triangles) needs two
times smaller time steps than the Gautschi-type integrator (solid + diamonds) on the same spatial grid
(N = 212). In our examples this reduces the computational time by a factor of 1.5 (see Table 1). If the phase
error is taken into account, too, the gain in computational time is even greater.
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Fig. 3. Maximum amplitude and phase error vs. runtime (a0 = 0.1) for varying s for leap-frog (dotted + triangles), Gautschi
(solid + diamonds), leap-frog + QEA (dash-dotted + circles) and Gautschi + QEA (dashed + squares). We used N = 212 for methods
without QEA and N = 211 for methods with QEA (see also Table 1).
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Fig. 4. Same as Fig. 3, but for a0 = 0.12.

Table 1
Runtimes for maximum one percent relative amplitude error

a0 = 0.1 a0 = 0.12

N s time/min N s time/min

LF 212 0.1 2:10 212 0.04 5:07
LF + QEA 211 0.1 1:03 211 0.05 1:57
Gautschi 212 0.2 1:32 212 0.12 2:28
Gautschi + QEA 211 0.2 0:44 211 0.12 1:10

N is the number of spatial grid points, s is the time step size. Computational details: Pentium 4, 3.0 GHz, Intel C++ 8.1, FFT routines
from Intel Math Kernel Library 7.2.
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4.3. Effect of choice of operators

The effect of the choice of operators is illustrated in Fig. 5 for the case a0 = 0.1. It is observed that the
choice of a = Q within the plasma reduces the phase error significantly while the error in the amplitude is only
slightly larger. However, for a0 = 0.12 switching between the operators did not pay off. The reason for this
might be the increased density variation compared to the smaller amplitude. The results in Fig. 5 were com-
puted including QEA of Section 3.4, but the method showed the same behavior when combined with other
variants described above. The phase error is given in terms of k whereas the amplitude error is given relatively
compared to the reference amplitude. In both cases the error is averaged over pulses at 100 different positions
spread evenly over the computation interval.

4.4. Effect of quasi-envelope approach

By applying the quasi-envelope approach to the leap-frog method as well as the Gautschi-type integrator,
the number of spatial grid points can be significantly reduced without loss of accuracy (see curves with and
without QEA in Figs. 3 and 4). Since the major part of computational time is spent on fast Fourier transforms,
which cost O(N logN) operations, the reduction of grid points by a factor of 2 again leads to a saving in com-
putational time of more than a factor of 2. Another reason for a more than linear reduction in computational
time is that smaller arrays are more likely to fit into the cache of the processor. For small enough arrays, a
whole time step can run from CPU cache. We observed that QEA is more effective in reducing the amplitude
error, while the Gautschi-type method is more effective in reducing the phase error.

The parameters for the discretization needed to achieve a maximum relative amplitude error of 10�2 are
summarized in Table 1. Exemplary runtimes for one specific hardware/software setup are also given.

If one compares the standard leap-frog method to the new variant of the Gautschi-type integrator com-
bined with QEA, the computational time is reduced by a factor of 3 in the first and even by a factor of 4.5
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in the second example. If we set a bound lower than 10�2 for the amplitude error, we see that without QEA
this error bound cannot be reached by only reducing s. This is because the error due to the coarse spatial res-
olution limits the accuracy that can be reached. Thus a finer grid is needed, which results in a corresponding
increase of computational time, while the discretization for QEA can stay the same (see Fig. 6).

4.5. Effect of two-level approach

The benefit of the two-level approach suggested in Section 3.5 is illustrated in Fig. 7. The reference solution
as well as the simulation results are shown at t = 700 Æ 2p for a plasma jump and a0 = 0.12. It can be seen that
in this case it is possible to work on a coarse grid (N = 211) in the major part of the simulation but it is not
possible to do the whole simulation on the coarse grid. In the transition we interpolated to 213 grid points.

4.6. Comparison with PIC

Finally, we compare with PIC simulations performed with VLPL [21]. Since PIC simulates E and B instead
of A, we base our comparison on intensities, calculated by
Fig. 6.
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Fig. 8. Relative difference in intensity to the reference solution of the reduced model for a0 = 0.1 (left) and a0 = 0.12 (right).
Gautschi + QEA (see Table 1, solid) and PIC (dashed) with N = 2 · 105, s = dz(N) and 3 particles per cell, runtime around 5:30 h.
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For the Gautschi-type method, one has to use (10) for the time-derivative, and for QEA o/oz! o/oz + ij. The
difference in amplitudes between the reference solution for the reduced model and PIC (see Fig. 8) and the
Gautschi-type method with QEA for the parameters given in Table 1 are of the same order. This implies that,
even with a relatively coarse discretization, the error of the simulations with our fastest solver is within the
accuracy of the reduced model, which seems to be at the border of applicability at a0 = 0.12.

We also noticed, that there is a systematic difference in group velocity between PIC solutions and ours. To
understand whether this is due to numerical error in PIC and/or our solvers, we made simulations with both
for a very small amplitude (a0 = 0.0001). The combination of small amplitude and a cold plasma allows to test
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Fig. 9. Phase-difference to the exact linear solution for PIC (dashed) and Gautschi + QEA (solid), both with a0 = 0.0001.
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Fig. 10. Phase-difference to the exact linear solution for PIC (a0 = 0.12: dash-dotted and a0 = 0.0001: dotted) and Gautschi + QEA
(a0 = 0.12, solid), difference between PIC and Gautschi + QEA for a0 = 0.12 (dashed).
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the phase error of the numerical simulations against the known linear analytical solution. The results in Fig. 9
show that PIC (dashed) produces a slight error in group velocity even on a fine grid, whereas Gautschi + QEA
(solid) with coarse discretization is close to the exact solution.

In Fig. 10 we compare the phase shift (with respect to the exact linear solution) of VLPL (dash-dotted) and
the Gautschi + QEA simulation from Table 1 (solid) in the nonlinear case (a0 = 0.12). The difference between
the two (dashed) is consistent with the linear phase error of PIC (dotted). This shows that the difference in
phase between nonlinear PIC and Gautschi + QEA is mostly linear phase error of PIC, which could also influ-
ence the accuracy of the amplitude calculation.

5. Conclusion

In the present paper, we have investigated numerically a physical model for wave propagation in a nonlin-
ear, dispersive medium. The model applies to strong laser pulse propagation into a relativistic plasma. It con-
sists of two coupled equations for the high-frequency laser field and the low-frequency plasma response. The
latter causes, besides dispersion, nonlinear effects due to relativistic mass variation. A fast numerical solver for
the coupled equations is presented. It incorporates two main ideas. First, a new variant of the Gautschi-type
integrator for reducing the number of time steps is proposed. Secondly, in order to reduce the number of spa-
tial grid points, a physically motivated quasi-envelope approach (QEA) is introduced. The new method turns
out to reduce the computational time significantly (for example by a factor of 4.5 even for low accuracy
demands) compared to the standard leap-frog scheme. We also found that for the weakly nonlinear regime
the combination of the reduced model and our fast solver is as accurate as a first-principle PIC simulation.
The latter, however, needs much more time.

The advantages of the present scheme for oscillatory problems are discussed in detail. It can be expected
that the main ideas will also be useful for other physical problems being highly oscillatory in nature, eg.
the non-linearized model. We currently investigate the extension to a three-dimensional geometry.
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Appendix A. Details of the physical model

From Maxwell�s equations we get for the vector potential A and scalar potential u in Coulomb gauge
�r2Aþ 1

c2

o
2A

ot2
¼ 1

c
oru
ot
þ 4p

c

� �
j. ðA:1Þ
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For fixed ions (we are considering fast solitary waves) the current density is
j ¼ �eneve. ðA:2Þ

By electron velocity and density, the wave equation is coupled to the continuity equation for the electron
density
o

ot
ne þr � ðneveÞ ¼ 0 ðA:3Þ
and the electron momentum balance
o

ot
þ ve � r

� �
Pe ¼ �e �ru� 1

c
oA

ot
þ 1

c
ve � ðr � AÞ

� �
; ðA:4Þ
which describe the nonlinear response of the medium. We can thus identify two sources of nonlinearity, den-
sity oscillation and the relativistic mass factor, because
ve ¼
Pe

mece

; ðA:5Þ
with
ce ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ve

c

� 	2
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Pe

mec

� �2
s

. ðA:6Þ
By some straightforward manipulations, we can write the momentum balance in the form
o

ot
Pe �

e
c

A

 �

¼ eru� mc2rce þ
1

mece

Pe � r� Pe �
e
c

A

 �h i

. ðA:7Þ
To normalize the equations we use the inverse wave-number ðk�1
0 Þ and inverse wave-frequency x�1

0 of the laser
carrier as unit length and time (x0 = c k0 in vacuum). A wave can propagate in a medium with (constant) elec-
tron density ne provided x0 > xp where
xp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnee2

me

s
ðA:8Þ
is the electron plasma frequency. We use the maximum ion background density nmax
ion as the density unit. The

critical density for wave propagation nc follows from the condition
4pnce2

me

¼ x2
0. ðA:9Þ
Thus, the parameter
Q ¼ nmax
ion

nc

ðA:10Þ
can be introduced; it has to be less than 1 for wave propagation.
Scalar as well as vector potentials are measured in units of mec

2/e. Velocities are measured in units of c, and
momenta are normalized with mec. From now on, we omit the index e for electrons. The electron momentum
balance then is
o

ot
ðP� AÞ � P

c
�r� ðP� AÞ ¼ rðu� cÞ. ðA:11Þ
Let us now write the basic equations under the assumption that the wave propagates in z-direction, so that all
variables depend only on one space coordinate, i.e.,
A ¼ AðzÞ; n ¼ nðzÞ; u ¼ uðzÞ; P z ! P . ðA:12Þ
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From the Coulomb gauge follows the purely transverse nature of the wave (A = A^). The wave equation for
the transverse component A^ now reads
o2

oz2
A? �

o2

ot2
A? ¼ Qn

P?

c
. ðA:13Þ
The longitudinal part of the wave equation simplifies to
o
2u

otoz
þ Qn

P
c
¼ 0. ðA:14Þ
Within the plasma, the perpendicular electron momentum balance
o

ot
ðP? � A?Þ þ

P
c

� �
oðP? � A?Þ

oz
¼ 0 ðA:15Þ
has the special solution
P? ¼ A?; ðA:16Þ
which also simplifies the longitudinal electron momentum balance
oP
ot
� P? �

oðP? � A?Þ
oz

¼ oðu� cÞ
oz

. ðA:17Þ
This leads to the basic set of equations:
o2

oz2
A? �

o2

ot2
A? ¼ Qn

A?

c
; ðA:18Þ

o2u
otoz
þ Qn

P
c
¼ 0; ðA:19Þ

o2u
oz2
¼ Q ðn� n0Þ; ðA:20Þ

on
ot
þ o

oz
nP
c

� �
¼ 0; ðA:21Þ

oP
ot
¼ oðu� cÞ

oz
; ðA:22Þ
where n0 is the time-independent part of n (which is identical to the fixed ion background), while in the
following dn denotes the first-order density oscillation.

Next, we specify to circular polarized waves, introducing
a ¼ Ax þ iAy . ðA:23Þ

This yields
c2 ¼ 1þ jaj2 þ P 2. ðA:24Þ

Writing
n ¼ n0 þ dn ¼ n0 þ
1

Q
o2u
oz2
� n0 �

1

Q
o~E
oz
; ðA:25Þ
the wave equation has the form
o2a
oz2
� o2a

ot2
¼ Q
ðn0 þ dnÞ

c
a. ðA:26Þ
The plasma response is determined via the equations
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odn
ot
¼ � o

oz
ðn0 þ dnÞP

c

� �
; ðA:27Þ

oP
ot
¼ �~E � oc

oz
; ðA:28Þ

o~E
ot
¼ Q
ðn0 þ dnÞP

c
. ðA:29Þ
Note that the additional equation
1

Q
o~E
oz
� oE

oz
¼ �dn ðA:30Þ
is the solvability condition of (A.29) and (A.27).
We may simplify the plasma response by taking a time derivative of (A.29) and substituting the correspond-

ing expressions from (A.28) and (A.27). The final result is
o2 ~E
ot2
þ Qn0

~E ¼ �Qn0

oc
oz
þ R; ðA:31Þ
where
R :¼ �Qn0

o

ot
1� 1

c

� �
P

� �
þ Qn0

o

ot
dn

P
c

� �
. ðA:32Þ
In the main text we assume R � 0. The reason is R � O(e4), whereas the other terms in Eq. (A.31) are of order
e2. Here, e characterizes the order of magnitude of a. Then the balance (A.28) suggests the ordering
dn � P � a2 � O(e2). Note that we do not scale the space- and time-variables. From (A.32) we then find
R � O(e4).

By similar arguments, to leading order, we can set P � 0 in (A.24) such that
c2 ¼ 1þ jaj2. ðA:33Þ

Together with (A.30) the basic set of equations is
o2a
oz2
� o2a

ot2
¼ Q
ðn0 þ dnÞ

c
a; ðA:34Þ

o2E
ot2
þ Qn0E ¼ �n0

oc
oz

. ðA:35Þ
The last equation may also be written in the form
o2dn
ot2
þ Qn0dn ¼ n0

o2c
oz2

; ðA:36Þ
if the density profile n0 is piecewise constant or depends only very slowly on z.
In the vacuum part of the density profile, where n0 = 0, Eqs. (A.34) and (A.35) reduce to
o
2a

oz2
� o

2a
ot2
¼ 0. ðA:37Þ
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